本日のゼミでは、前半に、第2次近似O(ε^2)の計算から導かれる R_2 に関する非同次方程式を確認し、その可解条件から永年項の抑制条件を得ること、そして、その可解条件からKdV方程式が導かれることを確認した。また、気泡流のKdV方程式の各項の係数の特徴を概観し、グラフと照らし合わせながら、各係数の符号について議論した。しかし、可解条件に対する理解は完全とはいえず、現時点では、天下りに受け入れることとした。
後半では、初期条件としての気相および液相の圧力のオーダを深く議論した。同時に、表面張力が効く気泡径を調べた。無次元化された初期液相圧力を、εのべきに一般性を持たせるべく定義し、Young-Laplaceの式の無次元化の過程を注意深く確認した。多数の疑問が生じたままではあるが、一通りの解決に至ったといえる。
この結果をもとに、長波と短波のそれぞれにおいて、どのようにパラメーターのオーダを設定すれば、上手く無次元化できるのかを考察し、両波長帯において適したオーダの一案を見出すに至った。
長期にわたる下積みの勉強を一段落させ、実際に自らパラメーターを選び、試行錯誤を繰り返しながら、近似方程式の導出へと進み始めた。両学生はそれぞれの卒業研究の第一歩を踏み出したといえる(文責:ヨシタカ)。