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Acoustic waves in bubbly liquids

Microbubbles

Acoustic wave
Liquid

Sound
source

Appearance of dispersion due to bubble oscillations ⇒ Competition with weak

nonlinearity as a result of long-range propagation at a far field (� wavelength)

Acoustic soliton formation (Weakly nonlinear wave)

Analogy of water waves as Nonlinear Dispersive waves:

K–dV Eq. (Shallow; wavelength � depth; weak dispersion)
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Non-Linear Schrödinger (NLS) Eq. (Deep; wavelength ≈ depth; strong dispersion)

i
∂A

∂τ
+

d2ω

dk2

∂A

∂ξ
+ c0|A|2A = 0 (A : complex amplitude)

Main Assumptions
Initially quienscent liquid uniformly containing many spherical gas bubbles ⇒
Volume averaged equations ⇒ Large number of bubbles in averaged volume

Long-range propagation of 1D progressive waves ⇒ Derivation of Far-field Eqs.

Liquid compresiblity ⇒ Dispersion and dissipation from oscillating bubbles

Heat conduction and gas viscosity are dismissed

Two types of Nonlinear evolutions at far fields [1]
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Uniqueness choice of size of set of three dimensionless parameters in terms of

Speed, Length & Time

Magnitudes of Dissipation & Dispersion versus Nonlinearity (≈ Mach number ≈
Amplitude ε � 1)(
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A unified theory to govern various far-fields [1]
♣ Various behaviors at various far fields ⇒ Various Competitions of Dispersion &

Dissipation with Nonlinearity

♣ Method of multiple scales with parameter scaling

Power series expansions of dependent variables in ε with respect to tm = εmt

and xm = εmx

Relative Sizes of Dissipation and Dispersion to Nonlinearity by using amplitude
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Substitution above into a generic set of bubbly flows

Speed U∗/c∗L0: Propagation speed/sound speed in Liquid ⇒ Dissipation due to

acoustic radiation

Length R∗
0/L

∗: Bubble radius/Wavelength ⇒ Dispersion due to bubble

oscillations

Time ω∗/ω∗
B: Incident freq./eigenfreq. of single bubble

Basic equations for bubbly flows in a two-fluid model
Conservation laws: Mass & momentum conservation for gas & liquid phases [2]
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α: Volume fraction of gas phase (void fraction)

p∗
G & p∗

L: Volume-averaged pressure of gas & liquid

P ∗: Surface-averaged liquid pressure at bubble–liquid interface

F ∗: Constitutive: Virtual mass force [3]
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♣ Bubble dynamics: Keller’s equation for radial oscillations of represtntive bubble in compressible
liquids (
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• Acoustic radiation =⇒ Attenuation of oscillations and Waves
Above set of equations is closed by
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Singular perturbation analysis (e.g. Jeffery & Kawahara, 1982)
Perturbation expansions of dependent variables:

f/f0 = 1 + εf1 + ε2f2 + · · · ,
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∗ = εuG1 + ε2uG2 + · · · ,
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L/ρ
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where κ = 2 for KdVB and κ = 5 for NLS ⇒ Uniqueness treatment of ρ∗
L [1]

Result: KdVB and NLS equations
(i) Long wave in low frequency ⇒ KdVB Eq.
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(ii) Envelope of short carrier wave in high frequency ⇒ NLS Eq.

i
∂A

∂τ
+ ν3

∂2A

∂ξ2
+ ν1|A|2A + iν2A = 0

Competition of Dissipation, Dispersion & Nonlinearity at two types of far fields

Coefficients Πi’s & νi’s include α0, R
∗
0, γ, ω

∗, ...

Solitary wave solution of KdV (not KdVB)
A steady travelling wave solution as a
particular solution of KdV Eq. without
dissipation A soliton solution for liquid
pressure:
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Height of solitons decreases with decreasing

void fraction
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Summary
Unified derivation method for nonlinear wave equations in bubbly liquids, which is

based on parameter scaling appropriate to specific wave phenomenon, is proposed:(
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