Weakly Nonlinear Formulation on Acoustic Waves in Liquids Containing Many Spherical Gas Bubbles (110)

Tetsuya KANAGAWA University of Tsukuba, Japan; kanagawa@kz.tsukuba.ac.jp

- Appearance of dispersion due to bubble oscillations ⇒ Competition with weak nonlinearity as a result of long-range propagation at a far field (≫ wavelength)
- Acoustic soliton formation (Weakly nonlinear wave)
- Analogy of water waves as Nonlinear Dispersive waves:
- K–dV Eq. (Shallow; wavelength \gg depth; weak dispersion)

$$-rac{\partial f}{\partial au} + f rac{\partial f}{\partial \xi} + C_0 rac{\partial^3 f}{\partial \xi^3} = 0$$

Basic equations for bubbly flows in a two-fluid model
Conservation laws: Mass & momentum conservation for gas & liquid phases [2]
$rac{\partial}{\partial t^*}(lpha ho_G^*)+rac{\partial}{\partial x^*}(lpha ho_G^*u_G^*)=0, onumber \ a = 0,$
$rac{\partial}{\partial t^*}[(1-lpha) ho_L^*]+rac{\partial}{\partial x^*}[(1-lpha) ho_L^*u_L^*]=0,$
$rac{\partial}{\partial t^*}(lpha ho_G^*u_G^*)+rac{\partial}{\partial x^*}\Big(lpha ho_G^*u_G^{*2}\Big)+lpharac{\partial p_G^*}{\partial x^*}=F^*,$
$rac{\partial}{\partial t^*}ig[(1-lpha) ho_L^*u_L^*ig]+rac{\partial}{\partial x^*}ig[(1-lpha) ho_L^*u_L^{*2}ig]+(1-lpha)rac{\partial p_L^*}{\partial x^*}+P^*rac{\partial lpha}{\partial x^*}=-F^*$
• $lpha$: Volume fraction of gas phase (void fraction)
• $p_G^* \ \& \ p_L^*$: Volume-averaged pressure of gas $\&$ liquid
$\bullet P^*$: Surface-averaged liquid pressure at bubble-liquid interface
• F^* : Constitutive: Virtual mass force [3]
$F^{*} = -eta_{1}lpha ho_{L}^{*}\left(rac{D_{G}u_{G}^{*}}{Dt^{*}} - rac{D_{L}u_{L}^{*}}{Dt^{*}} ight) - eta_{2} ho_{L}^{*}(u_{G}^{*} - u_{L}^{*})rac{D_{G}lpha}{Dt^{*}} - eta_{3}lpha(u_{G}^{*} - u_{L}^{*})rac{D_{G} ho_{L}^{*}}{Dt^{*}}$
Bubble dynamics: Keller's equation for radial oscillations of representive bubble in compressible liquids

• Non-Linear Schrödinger (NLS) Eq. (Deep; wavelength \approx depth; strong dispersion)

 $irac{\partial A}{\partial au}+rac{d^2\omega}{dk^2}rac{\partial A}{\partial \xi}+c_0|A|^2A=0 \quad (A: ext{complex amplitude})$

Main Assumptions

- Initially quienscent liquid uniformly containing many spherical gas bubbles ⇒ Volume averaged equations ⇒ Large number of bubbles in averaged volume
- Long-range propagation of 1D progressive waves \Rightarrow Derivation of Far-field Eqs.
- Liquid compresiblity \Rightarrow Dispersion and dissipation from oscillating bubbles
- Heat conduction and gas viscosity are dismissed

Two types of Nonlinear evolutions at far fields [1]

- Uniqueness choice of size of set of three dimensionless parameters in terms of Speed, Length & Time
- Magnitudes of Dissipation & Dispersion versus Nonlinearity (\approx Mach number \approx Amplitude $\epsilon \ll 1$)

$$\begin{pmatrix} U^{*} \\ \overline{c_{L0}^{*}}, \frac{R_{0}^{*}}{L^{*}}, \frac{\omega^{*}}{\omega_{B}^{*}} \end{pmatrix} \equiv \begin{cases} \left(O\left(\sqrt{\epsilon}\right), O\left(\sqrt{\epsilon}\right), O\left(\sqrt{\epsilon}\right), \left(\sqrt{\epsilon}\right) \right), & \text{(for KdVB)} \\ \left(O\left(\epsilon^{2}\right), O(1), O(1) \right), & \text{(for NLS)} \end{cases}$$

A unified theory to govern various far-fields [1]

 \clubsuit Various behaviors at various far fields \Rightarrow Various Competitions of Dispersion &

$$egin{aligned} &\left(1-rac{1}{c_{L0}^{*}}rac{D_{G}R^{*}}{Dt^{*}}
ight)R^{*}rac{D_{G}^{2}R^{*}}{Dt^{*2}}+rac{3}{2}\left(1-rac{1}{3c_{L0}^{*}}rac{D_{G}R^{*}}{Dt^{*}}
ight)\left(rac{D_{G}R^{*}}{Dt^{*}}
ight)\ &=\left(1+rac{1}{c_{L0}^{*}}rac{D_{G}R^{*}}{Dt^{*}}
ight)rac{P^{*}}{
ho_{L0}^{*}}+rac{R^{*}}{
ho_{L0}^{*}}rac{D_{G}}{Dt^{*}}\left(p_{L}^{*}+P^{*}
ight) \end{aligned}$$

• Acoustic radiation \implies Attenuation of oscillations and Waves Above set of equations is closed by

$$\begin{split} \frac{p_G^*}{p_{G0}^*} &= \left(\frac{\rho_G^*}{\rho_{G0}^*}\right)^{\gamma}, \quad p_L^* = p_{L0}^* + \frac{\rho_{L0}^* c_{L0}^{*2}}{n} \left[\left(\frac{\rho_L^*}{\rho_{L0}^*}\right)^n - 1 \right], \\ \frac{\rho_G^*}{\rho_{G0}^*} &= \left(\frac{R_0^*}{R^*}\right)^3, \quad p_G^* - (p_L^* + P^*) = \frac{2\sigma^*}{R^*} + \frac{4\mu^*}{R^*} \frac{D_G R^*}{Dt^*} \end{split}$$

Singular perturbation analysis (e.g. Jeffery & Kawahara, 1982) Perturbation expansions of dependent variables:

$$f/f_0 = 1 + \epsilon f_1 + \epsilon^2 f_2 + \cdots, \ u_G^*/U^* = \epsilon u_{G1} + \epsilon^2 u_{G2} + \cdots, \
ho_L^*/
ho_{L0}^* = 1 + \epsilon^\kappa
ho_{L1} + \epsilon^{\kappa+1}
ho_{L2} + \cdots,$$

where
$$\kappa=2$$
 for KdVB and $\kappa=5$ for NLS \Rightarrow Uniqueness treatment of ho_L^* [1]

Result: KdVB and NLS equations

(i) Long wave in low frequency \Rightarrow KdVB Eq.

$$rac{\partial f}{\partial au} + \Pi_1 f rac{\partial f}{\partial \xi} + \Pi_2 rac{\partial^2 f}{\partial \xi^2} + \Pi_3 rac{\partial^3 f}{\partial \xi^3} = 0$$

(ii) Envelope of short carrier wave in high frequency \Rightarrow NLS Eq.

$$\mathrm{i}rac{\partial A}{\partial au}+
u_3rac{\partial^2 A}{\partial \xi^2}+
u_1|A|^2A+\mathrm{i}
u_2A=0$$

• Competition of Dissipation, Dispersion & Nonlinearity at two types of far fields • Coefficients Π_i 's & ν_i 's include $\alpha_0, R_0^*, \gamma, \omega^*, ...$

Dissipation with Nonlinearity

- Method of multiple scales with parameter scaling
- Power series expansions of dependent variables in ϵ with respect to $t_m = \epsilon^m t$ and $x_m = \epsilon^m x$
- Relative Sizes of Dissipation and Dispersion to Nonlinearity by using amplitude $\epsilon \, (\ll 1)$,

 $\left(rac{U^*}{c_{L0}^*},rac{R_0^*}{L^*},rac{\omega^*}{\omega_B^*}
ight)=(O(A),O(B),O(C))\equiv(O(\epsilon^a),O(\epsilon^b),O(\epsilon^c)).$

- Substitution above into a generic set of bubbly flows
- Speed U^*/c_{L0}^* : Propagation speed/sound speed in Liquid \Rightarrow Dissipation due to acoustic radiation
- ${\small \bullet}$ Length $R_0^*/L^*:$ Bubble radius/Wavelength \Rightarrow Dispersion due to bubble oscillations
- Time ω^*/ω_B^* : Incident freq./eigenfreq. of single bubble

Solitary wave solution of KdV (not KdVB)

A steady travelling wave solution as a particular solution of KdV Eq. without dissipation A soliton solution for liquid pressure:

$$p_{L1} = \mathrm{sech}^2 \left(\sqrt{rac{-\Omega^2/\Delta^2 \Pi_1}{12 \Pi_3}} \xi
ight)
onumber \ (\Pi_1 < 0, \ \Pi_3 > 0, \ au = 0)$$

Height of solitons decreases with decreasing void fraction

Summary

Unified derivation method for nonlinear wave equations in bubbly liquids, which is based on parameter scaling appropriate to specific wave phenomenon, is proposed:

$$igg(rac{U^*}{c_{L0}^*}, rac{R_0^*}{L^*}, rac{\omega^*}{\omega_B^*} igg) \equiv (O(\epsilon^{oldsymbol{A}}), O(\epsilon^{oldsymbol{B}}), O(\epsilon^{oldsymbol{C}})).$$

[1] Kanagawa et al., J. Fluid Sci. Technol., 5 (2010), 351. [2] Egashira, Yano & Fujikawa, Fluid Dyn. Res., 34 (2004), 317.
 Yano et al., J. Phys. Soc. Jpn., 75 (2006), 104401. [4] Kanagawa, J. Acoust. Soc. Am. 137 (2015), 2642.

